The CCAAT displacement protein/cut homeodomain protein represses osteocalcin gene transcription and forms complexes with the retinoblastoma protein-related protein p107 and cyclin A.
نویسندگان
چکیده
Developmental control of bone tissue-specific genes requires positive and negative regulatory factors to accommodate physiological requirements for the expression or suppression of the encoded proteins. Osteocalcin (OC) gene transcription is restricted to the late stages of osteoblast differentiation. OC gene expression is suppressed in nonosseous cells and osteoprogenitor cells and during the early proliferative stages of bone cell differentiation. The rat OC promoter contains a homeodomain recognition motif within a highly conserved multipartite promoter element (OC box I) that contributes to tissue-specific transcription. In this study, we demonstrate that the CCAAT displacement protein (CDP), a transcription factor related to the cut homeodomain protein in Drosophila melanogaster, may regulate bone-specific gene transcription in immature proliferating osteoblasts. Using gel shift competition assays and DNase I footprinting, we show that CDP/cut recognizes two promoter elements (TATA and OC box I) of the bone-related rat OC gene. Overexpression of CDP/cut in ROS 17/2.8 osteosarcoma cells results in repression of OC promoter activity; this repression is abrogated by mutating OC box I. Gel shift immunoassays show that CDP/cut forms a proliferation-specific protein/DNA complex in conjunction with cyclin A and p107, a member of the retinoblastoma protein family of tumor suppressors. Our findings suggest that CDP/cut may represent an important component of a cell signaling mechanism that provides cross-talk between developmental and cell cycle-related transcriptional regulators to suppress bone tissue-specific genes during proliferative stages of osteoblast differentiation.
منابع مشابه
p107 and Cyclin A Complexes with the Retinoblastoma Protein-related Protein Represses Osteocalcin Gene Transcription and Forms
Developmental control of bone tissue-specific genes requires positive and negative regulatory factors to accommodate physiological requirements for the expression or suppression of the encoded proteins. Osteocalcin (OC) gene transcription is restricted to the late stages of osteoblast differentiation. OC gene expression is suppressed in nonosseous cells and osteoprogenitor cells and during the ...
متن کاملDifferential regulation of the retinoblastoma family of proteins during cell proliferation and differentiation.
In the present study we have analysed the regulation of pocket protein expression and post-transcriptional modifications on cell proliferation and differentiation, both in vivo and in vitro. There are marked changes in pocket protein levels during these transitions, the most striking differences being observed between p130 and p107. The mechanisms responsible for regulating pocket protein level...
متن کاملExpression and Purification of Homeodomain
Homeobox genes encode transcription factors which play important roles in the developmental processes of many multicellular organisms. TGIFLX/Y (TGIFLX and TGIFLY) are members of the homeobox superfamily of genes. Their expressions are specifically detected in the human adult testis but their functions are remained to be investigated. In this investigation we cloned full length of TGIFLY cDNA a...
متن کاملThe Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملP-203: Examination of FMR1 Gene Transcription and Protein Expression in Patients with Diminished Ovarian Reserve Reffered to Royan institute
Background: Diminished ovarian reserve (DOR) is a primary infertility disorder characterized by a reduction in the number and/or quality of oocytes, usually accompanied by high follicle-stimulating hormone (FSH) levels and regular menses. DOR aetiology factors are different, such as genetic factors, ageing, autoimmune disorders, adrenal gland impairment factors and iatrogenic causes, e.g. chemo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 59 23 شماره
صفحات -
تاریخ انتشار 1999